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An asymptotic theory of limit shell equilibrium is constructed for rigid-plastic
media, The variational approach permits investigation of the limit equilibrium
without relying on an analysis of the state of stress, Hence, there is no necess-
ity for the traditional division of the states of the shells into the bending and
membrane states, The different states of shells are classified according to the
degree of approximation to the exact three-dimensional formulation of the pro-
blem, The first figure of the asymptotic expansion is introduced for the kine-
matic factor and conditions are mentioned when this term of the expansion dif-
fers from zero, The asymptotic accuracy of the shell approximation is proved,

1. Formulation of the problem. Letusconsider a three-dimensional
volume T,  defined by the relationships

r=p( M) +n, n=(p: X))oz Xpa] Y &<
LI &LE D

Cl < (:27 r == (.I, Y, Z); (ga 71) &= D, Pz == 6@/3%, Py = 6pfa'l’r

Here 0 (§,1) gives the surface in the three~dimensional space, It is assumed that the
coordinate lines & = const, = const thereon are lines of curvature,

Let the volume Ty contain an incompressible rigid-plastic medium with the dissipative
potential ¢, (x, ¥, 2, & 5) 1], Let us assume that the potential @n  has the fo-
llowing form in curvilinear coordinates £, 1, €

i.
Oh = @ (gs N €, eezy Enmy B2ny Bty €25 e“t) (.1

Here e = (egg, €rny Ciny €LLs €EYy 6nt) is the strain rate tensor. If u = (u, v, w)

is the vector velocity field in projections on &, ¢ respectively, then
opy = — 1 28 v O, K (1.2)
BTUH, % THH, o T—K,RL
P 1 dv + u oH | Kw
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Here K;, K, are the principal surface curvature in the directions g 7 , respec-
tively. The potential ¢ is assumed to be a convex function of the first power of the
homogeneity relative to the tensor ¢, , i.e.,

P (gs 1, C? )\,8) = ?\'CP (ga ., C, 8), A=>0
and such that there exists a positive f, for which

Bl <@, I = (eg® + enn® + exe? + 2e5,% + 2052 & 2eq )t

Moreover, we assume @  to be a smooth function of its arguments for I > 0.
In the case of an isotropic medium, it can be shown that @ satisfies the relation-
ship @ (E,m, L, e) > @ (E 1, L, &), where & isthetensor € at which €
= ey = 0.  The velocity fields on which the tensor €, is defined are assumed to
be solenoids
! .3
ez + emn 4 ey = 0 -3
and to satisfy certain boundary conditions,
Let a s;stem of forces 7,:(f (E, n, 2), Af; (E, ), i= 1.2 act in a medium enclosed in

the volume 7: (¢ n)e= D, § << L < § - Here f(E, m, ©) s the density of
the volume forces acting in the domain 7. and f; (§, m) is the density of the sur-

face forces concentrated on the surface &= {;(§,1n),i=1, 2.

One of the most important quantities in the theory of rigid-plastic media is the kinema-

tic factor for the system of forces /7, i,e., the number ¢,, defined by the formula
(1.4)

L {Bfu&dgdndé +

h u, div u=¢

i S fiuAidgdn][ S @AdE dn dz;]“l}

i=1 8 T
AxHZHm Si:c:Ci(gsn)v Aiz{rﬁ,xrn’”;=§iy i=1,2
It will be shown that
ep=¢ +akh), akh)—0 for 50 (1.5)

The number '€, is called the shell approximation of the kinematic factor and a for-
mula will be obtained for it, which is substantially simpler as compared with (1.4).
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2, Shell approximations, Limits of applicability of the
shell approximation, Letus introduce the shell approximation by introducing
heuristic hypotheses, The foundation for this approximation will be given below.

Let w;, be a field on which the upper bound in (1,4) is achieved, and let these
fields converge to u, as h — 0 . It follows from the kind of components of the ten-
sor e that uy = (o (&, M), v (§, M), wy (£, 7). Therefore, for small &
the field w, has the form

u, = U -+ huy (8,1, §, h) (2.4
where the components 1 (§:M, &, k) are bounded in some sense. It follows from
the form of the field (2, 1) that a change in Ui, on the order of one will cause a chan-
ge on the order of % in the components €1z, Cun. €2 and on the order of one
in the components ez, ey. Hence, by selecting the field Uy it is possible to
try to diminish the value of ¢ in (1.4) if possible. We therefore arrive at the shell
potential

¥, N, &) (€, M. g, €53, €yny €3y, ~ Czz — Eqy) ==
- min (p (g’ nq §1 e)

egy eny

Neglecting quantities approaching zero in A as h— 0, and considering the up-
per bound in (1,4) on the fields w = u (§, n), we arrive at the following expres-
sion for o

%— = sup { \ [Pu -+ Qv+ Rw]dEdn L R Yo (§, 1, &) dE dn_Jﬂl} (2.2)

i » D
i
P = (fr it S rat) el loal Q= (fd £t +
§ fadt) ozl 0 |

R=(f¢ 4 12+ \ Rt pel10al = Gz fon o)
fi = (2 fa's 2 =12 g =k =0

3
YoEm8) = \ Y (E M Ce)dl oz|len]
T

No incompressibility condition has been imposed in (2. 2) in determining the quantity

o on the admissible field # since this condition can be satisfied because of the
selection of wy (E, M, &, #). The shell approximation introduced has meaning only
for ¢5 5= 0.

Let us examine the case when ¢, = 0.  This holds, say, when the vector (P,
Q, R)is not orthogonal to at least one solution of the system of equations £ (u) = 0.
The system of equations &, (u) = 0 (three differential equations in three unknown
functions) corresponding to an unclosed surface r = p (€, M), if additional boundary
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conditions are not imposed for it, has an infinity of linearly independent solutions (in
contrast to the over-determined system e = 0, which has only the motion 7, asa
solid as the solution), Therefore, in order for there to be ¢o 5= 0, it is necessary
to assume that the vector (P, Q, R) is orthogonal to all w , the solution of the
system € (u) = 0. In addition, compliance with an infinity of orthogonality condi-
tions is a very rigid constraint on the class of possible external forces, the formulations
of the problem in stresses (such problems are considered in [2], for example) are physic-
ally incortect since an arbitrarily small perturbation of the external forces can violate
some of the orthogonality conditions and ¢a thereby vanishes.

3. Computation of the kinematic coefficient of the

shell approximation, The problem of finding the kinematic factor ¢,
is closely related to the investigation of the properties of the following system:

1 du » 3lpgl e (3.1)
ToeT 3% T ToillenT —m Ko = ez

1 v u a[pn] - o
TouT o0 T TeillegT 08 R = o

e | oq | v °
T () t el mr)) e

The theory of boundary value problems and methods of solving this system are develo-
ped in [3]. The geometric aspect of the investigation of the system (3. 1) is contained
in [4].

Let a eertain problem be posed for the system (3, 1), which is uniquely solvable,i. e,
let us assume that there exists an inverse operator

u=Ge, u=(u, v, w), € = (B, Enr"s E&n )

with respect to which it is assumed that the conjugate operator G*

\PGegdidn =  (¢*P)edidn, P= (P, Q. R)

D D

is a bounded operator acting from the space of sufficiently smooth vector fields &
into the space of continuous vector fields w. Problems in which an operator bounded
in the mentioned sense and conjugate to the inverse operator exists for the system (3.
1) are called algebraicized ones,

Using the operator G*, let us rewrite (2, 2) in the form

= {§ @Pean] | v e dean] '} =

_(G*P(E, ) e
il THE e

(3.2)

The theorem on the norm of a linear continuous functional in Ly (D) is used in ob-
taining ¢3. 2).
Therefore, the question of finding the kinematic factor reduces to an algebraic pro-
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blem to find the upper bound of a function of five variables (£, M 83", Ean'y Ean').
Let E*, 0%, £®  be values of the variables for which the upper bound (m;ximum)
is reached in (3. 2). Then the extremal field €* (§, n) has the form g,* (E, n)

= &% (§E—E&% M —"M%).  The extremal field u*. on which the upper bound
in (2, 2) is reached has the form y* = Ge,* (£, ). Let us note that in the case of
algebraicized problems, there is a point 0 (§%, %), on the surface r == o (& n)
which determines the nature of shell failure, Let us note also that when Yo is a smooth
function of the variables &, the extremal vector #,* is determined from the algebraic
equations

Fop o P (3.3)

Foofdey;  Molde,,  Dpoldeg,
G*P = (Fez, Fany Fen)

For example, in the case of the Mises potential
bo = a (& W(eea)® + (Enn)? + (E2 - £00)? + 2 (2
the system (3, 3) is solved easily and the following formula is obtained for <o
1y (364D
t_ 2__[Fh 4 Foy— FuF -Liﬁ]’}
“max{‘/ga(&’m £Z nn glan 7 T4V En

¢ &0
4, Examples, Calculation of the quantity ¢ reduces to finding the oper-
ator G*, . An effective construction of the operator G* can be performed, for exam-
ple, in the case of second order surfaces of positive Gaussian curvature, In this case, the
system (3. 1) reduces to a Cauchy-Riemann system,
In the case of shells of revolution, the operator ¢* can be found by separation of var-
iables, whichresults in the solution of an infinite system of linear ordinary differential
equations, However, if we represent the external load vector P in the form of a po~

lynomial :

p=N
PE M= 3 P E)™
k=-—N

(£ == comst iy a parallel on the surface of revolution), then the problem of calculat-
ing ¢, reduces to integrating a finite system of equations.

Let us examine specific problems,
Example 1, Let us examine the surface of a torus

z=(b+ asin(§/a)cosyn, y= (b+asin(t,/a))sin'n,
z=acos{£/a)

in this case, in order for ¢o  to differ from zero, the condition

ﬂga (b sin () — Roos () |42 =0
0

must be imposed on the field p, in addition to the condition of orthogonality

(4.1)
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of the torus motions as a solid,
Condition (4, 1) is a result of the fact that the system (3, 1) for a torus with g, = 0,
allows a solution of the form

Cysin((/a), 0KECne w = —Cicos(§/a), 0CEAa

=0, u= Cosin(E/a), ma<<ES2ma’ L —Cgeos(E/a), ma<<E2ma

in addition to the ordinary solutions corresponding to the motion of the torus as a solid,
This solution is a nontrivial infinitesimal flexure of the torus, For instance, the field

p=0, Q=0 R=p(b+asin(/a)

corresponding to the case when a toroidal shell is subjected to uniform internal pressure
with the density f' = p , satisfies the condition (4, 1), Under the condition that
At = [; — §; = const, we have from (8, 4) for ¢o

TUVEAg(b"’a)
= e V36— 3ab + o

The failure points (2%, m*) are hence the following £* = 3na/2,£* = na/2,0<
n* <2n.
Let us consider the problem of the kinematic factor for a torus rotating around the ax-
is at the angular velocity w. In this case the centrifugal forces P act on the tor-
us, Let ? be the volume density of the torus material, Then

0 =0, Af= const,
Pgin((/a)=Rcos(E/a)=A
4 =?m2(b+asin(i/a))cos(&/a)sin(g/a)

From (3, 4) we find
T ]/ 3
b= "% (b4 a) )

Example 2, Let us consider a conic surface r == £ ry (), where 3 is the
length of a segment of the cone generator measured from its apex, r, ()  1s tne lineof
intersection of the cone with a unit sphere whose center is at the cone apex, and 1
is the arclength along this line. In the case of surfaces of zero Gaussian curvature the
system (3, 1) is solved by quadratures [3], and ¢, is found from (3,4), For example,
let it be given the circular cone

ro{n) = (cosncos B, sinneosB, —sinB), O0<LEL!

Here (n/2)— @ is the cone half-angle, We examine an external force field of the
following kind: P =0, ¢ = 0, R = R (7). We then have from (3, 4)
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Example 3, Letus consider a cylindrical surface, In this case

eE m=rom-+E v=(0,0,1), rov=0 0<EL
[r' =1, Kgxﬂr Kn‘-‘:K{’:}}, AR R

Let us consider some specific problems of determining ¢o for cylindrical shells, We as-
sume that P = ¢, ¢ = 0, B = R (£). Then

1

; i - . (4.2
a =105 Fa=—T 0w
L

?

\ i
g

Substituing (4. 2) into (3.4), we find the formula for ¢,
Let us consider the problem of the stiffness of the covering of a cylindrical shell under
its own weight, Let v, )=z (1), ¥ (0, 0). Then

P=0, Q=-—ygy, R=—ygy"/k(n)

in this case (3,4) takes the form
A 2 | JE—BRr @ jy R YT
w =V ’i‘,i"(a{i. W 4 [“?3?:?(‘%%“““3"“}] + (‘af} -
(L—8P y" & [y - TO (¥ O\
i g () pse o ()]

The shell remains stiff if ¢o 2> 1. Let the coating of constant thickness A} be a part
of a circular cylinder of radius I, 0 <n <%l Then k= —1/1I, = cos (n/ ),
y=={sin{n/ 5. We find from (4, 3)

(4.3)

1 2y {( 1t L”> 7 1512 cos? 1 }17’2 (4. 4)
[T £ - S, 3 5 124 L2 sin? = LORE ——
& TYBrAp a W T ‘

¥ LAt — 11 L% >0, the greatest value in (4.4) is reached at w=amnl/2.
I I8 14— 11 L2 < 0, the greatest value in (4,4) will be reached for = ¢
or m = al.
We note that the stiffness condition depends on £ and for sufficiently large L
the covering generally loses stiffness,
Formula (4. 3) shows that there exists a single form of covering for which €0 is inde-
pendent of E. For this it is necessary that
{4. 5}
{y" / ¥* {n)) — y == vonst
Equation (4, 5) is easily integrated and there is obtained from it that the generator of
such a covering is a catenary.
5, Nonalgebratcized problems. The problems considered do not
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cover the whole domain of applicability of the shell approximation, Namely, such ki-
nematic constraints as result in overdefined problems for the system (3, 1) can be impos-
ed on the allowable field u , In this case the system (3. 1) reduces to (3,2), but the
g (EM) i (3.2) belong to some subspace of the space of smooth vector fields,
and hence, the theorem on the form of the norm of a linear functional in L, (D) is not
directly applicable, which does not afford the possibility of algebraicizing the problem.
However, an algorithm can be given to find a system of lower bounds for ¢o- This al-
gotithm is based on the method of Lagrange multipliers, The following theorem of Nik-
ol'skii [5] plays an essential role here, Let a linear, continuous functional F' (u) be de-
fined on a subspace A/ of the Banach space B, extracted by a finite system of linear
continuous functional T';, T; (u) =0, §=1, .. N. Then

I # Jlar = Sup u ; Hif sup {[F (u)—iM’i (u)] / [ uils}

Let us return to Example 3 in Sect. 4, Let a cylindrical shell of length L, 0 & <
L,AT = 4with circular cross section of radius ¢ be subjected to the normal pressure
P =0, 0=0, B=R(E). If the shell is fixed only at the edge £ = 0, then as fo-
llows from (3, 4), (4.2), the quantity R (§), at which the shell remains rigid should be
such that
max | R @) | < Vo / 20

Now we examine the same problem but under the conditions u (0) = u (L) = 0. The
constraints mentioned result in the following condition for &,

L
\ gze” (t)dv =0
J

Using the Nikol'skii theorem, we obtain for ¢,

1 ) 2
7, = minmax { Vow W+ BE - RE) am%}

€y

Let R () be enclosed within the limits
Ry=min R () <R (§) <max R (§) =
We examine three domains on the plane (R, R*)
= (R* >Ry, R*>— 28,}
Dy = (R* > Ry, —'a R, < R* < — 2Ry}
= {R*> Ry, R* < —aR )

Then the conditions on R (£), for which the shell remains rigid are the following

R* < Vo, /a in Dy
(Ry2+ R¥ + RR*"* < Vb7 /(2 in D,
R*>“"V2T0/a i-ﬂ Dg

We note that fixing the second edge of the shell results in an increase in its rigidity.
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Let us consider the problem of the rigidity of a covering of cylindrical shape of const-

ant thickness A = 1. We assume that overdetermined conditions O, n)y=u (L, n)
= (relative to the system (3. 1) are imposed on the field y ., This assumption results in
the constraints

L L
Ceges (o mar =0, (20— (L —7)de,7 ) omldv =0
0 0

To solve the overdefined problem obtained, two functional Lagrange multipliers % m),
) must be introduced, In the problem under consideration, the number ¢  has

the following form in the case of the Mises potential
(5.1)

) [ (L—8p 8 [y
¢ Vb, {“;2“{{ H 2 o (Kz —y)+7»(n)+
2 N2 ” L—ER g2 ”
(L —&)w (")] (%‘2‘) ”%T[L—z-a)"a—nz(%?—ﬂ%—k(n)«k

For example, if the generator of the cylinder is a catenary, then (5, 1) becomes

KSR L
wmve it (i) o e —ow - g [ 4

Evidently 4 and ! should be selected as follows
M:O, ;‘4:1/2y”/K2

The extremal field which satisfies the overdefined conditions is found easily in the ca-

se under consideration.
6. Proof of the asymptotic accuracy of the shell

approximation for external loads of a special kind.

The asymptotic accuracy of the shell approximation is investigated under the following
assumptions relative to the formulation of the problem, Let {;, = const, Ly ==
const, @be independent of { and ¢ (E, n, €) > (E, M, €). Moreover, it is as-
sumedthat the boundary conditions are independent of .

Let us consider a system of external forces of a special kind

F’l : (f (.Ea Tl)v 07 O)
Let ¢x* denote the following number:
1 . i -1
Lo s | BtuAdg dndg wm & &) Adtdnds] |
I u{y, m, &) L.
Here the upper bound is taken over fields W, satisfying the boundary conditions but
not generally satisfying the condition (1.3). Henceforth in addition to the variables
E, m, § it will be convenient to consider the variables £, M > where
=h, 2 ={0:0; 0 0% We note that the coefficients in (1, 2) are
independent of 2 in these variables. The following lemma will be used below.
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Lemma 6.1.Let M (E, M, ) be a sufficiently smooth function in the neigh-
bourhood 9D X X (8D is a piecewise-smooth boundary of D) and 4 (§, M,
6), B (&, M, O) sufficiently smooth functions in the same domain which are not zero
on dD X 3. There exist smooth functions Us, ¥s» which vanish on 4D X 2
and outside a boundary layer of width 8 (the boundary layer enters into the domain
of definition of the functions M, A, B), such that

Jug s Jug dvg
9t + 9% o a +
3”5 6v5
||| Nus| - lvs] < CB
dug dvg
[A % TP ”aoxz:M'f”’X‘2

The lemma can be proved by direct construction of the functions 5, »5 according to

the scheme elucidated in [6], Namely, it is possible to set 25 = 0, in a volume

adjoining the piece of the boundary 8D x 2, to which the lines m = const, 0 =
const are transversal, and ¥s can be found in this volume from the conditions of

the lemma, Furthermore, these local solutions are matched by using the partition of one.
Theorem 6, 1, Let

e >+ oy (B), o (B)—>0 for h—>0 (6.1)
Then

Ch=120Co+ 0y (h), 0y(h)—>0 for h—0
Proof, From the assumption relative to ¢ it follows ¢, > ¢il. Therefore,
to prove the theorem it is sufficient to show that

o+ >c,, y()—>0 for h—>0 (6.2)

Let U™ (8, 1) bea family of infinitely differentiable fields on which the upper bound
in (2. 2) is realized. We assume that the wu;* satisfy the normalization condition

o% (60 3)
Yo@ ne) oo dzan = 1
Here &°F is the tensor &°, . evaluated by means of w*.  Since the Wi* enter al-

gebraically in the expression for £°*, the Wt* can be considered finite in ), Let
8 (@) = O asy —» 0, We introduce the functias use) (8, 1), vy (E, m), such that

(6.4)
us(t) loapxz = Vs Jopxz = 0
( 1 3"5(0 1 3”5(:) _
log| 9% leg!  0n Jlopxs
1 Ou* 1 617,* 1 » Olpg|
— u -
[Ipal gt o] om + TR (‘ 1

5 fopes
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By virtue of Lemma 6, 1, the functions ugsy), s 2nd 8 (f) can be selected such

that the relationship

- lti_lng{lgfutlpznpn!dgdn [IS)cp(a, n, &) |pe|galdEdn] "}

L

Co
will be satisfied for the vector functions %t © U = W™ + usy, v = v + wvsq),
] -]
w; = w*  where &t » 8gnt'y Eqni°  are evaluated by means of W, = (Ui.

vy, W) It follows from conditions (6,4) that:
(6.5)

L] o
&egt + Ennt [opxz = 0

The vector fields ¥t  satisfy the same boundary conditions as does w,*. To obtain (6.

2), let us examine
U = Uy (gv n) + Ch [utl (Ev n) + ut2 (E? M, Ch’)]
v = v (&, m) A+ Ch v (&, ) + v (& n, CA)]
wip = wy (§, M) + hwyt (8, 1, O

Here
1 8wt 1 awt
1o b Ky, vlre= — e — Ky
Uy [o.] 0% et ¢ |qu a nYi

g
The functions u? (&, m, 0), v (& 1, o) equal zero on oD x X and
ov,2

ou,? av,t du,? v 2 Ou,? p
% "*‘ E3 m m 1‘| dc 30| <Ct
I B YR O SR S S AR
<Hz 9% H, o >aD><L { Z[HE % o (HaHn 5
LAYy PR . SO Y S
log e, 1 % ] ’[ H, —om o (HEH“ an
1 2| gl
“’EHPnl an )]} aDX S
u?, v®  with the properties mentioned follows from Lemma (6.

The existence of
1). The function W' is determined from the equations

(6.6)

dwip, 1 Ky Ky
+ hwm(1—h§1{Z & 1-/1?;1(“)

— 5t
K K 1 aut
13 n
w‘(1——h§Ka+1-—h§Kﬂ>+|pz| A
; ? alp ‘
v o)l 1 9y 4 n
T leglle,l 98 +

lp 1ol M fogl
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H, o% H,_ ~om hg \H A, %

1 a]p,l vy 1 oHy 1 alpgl n
IrN A ) TE(HEHn an [0:1Tp,1 ~ oM )
1 But R ] 1 Oyt ut OH,
H, o H.H, o H, Hd, ~% +
1 Buf 4 vt2 BHE 4—“—1— thg T “t2 aH“]

Hy % HH, a =~ H 0 Hd, 3

It follows from (6,4)~(6, 6) that Wi can be selected to vanish on 9D X Z,
where U,  satisfies the same boundary conditions as does u,*, and satisfies the in-
compressibility condition,

The following inequality results from (1.4)

> §f“thAd§ andz[ o n ew) Adsdnde|” >
h iy

[ fu* el ool d2dn + hE ()] X
D

[So@m e locllpaldtan + 6]
D

6.7

where E (f), G (£)s generally tend to infinity as £ —> 0.  Let us select the depen~
dence ¢ (k) sothat AE (¢t (h)) >0, G EEYR—>0 a p—>0, Then (8.
2) follows from (6.3), (6,7), where ¥ (h) can be estimated in terms of the given pro-
blem, The theorem is proved,

We note that finding the quantity x' s a more simple problem than finding cp,
where the inequality ¢a! < ¢ always holds,

Let us indicate certain cased when (6, 1) is satisfied and consider

1/eq (o) = Sup {4(0) B (o)}

A(0) = §qu(o)d§dn, B(0) = §cp(§, n,¢) A (0) dEdn

A=A, Lih=o0< o o ={§"
Theorem 6,2,
¢t > infyeo (0)
Proof. The assertion in the theorem is equivalent to the inequality
1/ et < supe {1/ ¢ (0)}
Let us prove this inequalify. In fact

4= ol e} <
LA A 1
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sup sup {4(0) B (o))

oo u(E, m)

The assumption that the boundary conditions for u & mn, O are independent of
{ isused in obtaining the last inequality,
Therefore, to establish (6, 1) it is sufficient to show that

co () —> ¢ for h—0 (6.8)

The relationship (6. 8) can be obtained, for instance, for surfaces of positive or zero
Gaussian curvature, In this latter case, formulas for the general solution of a system
of equations of infinitesimal flexure of developable surfaces (3, 1) can be used [3],
We present still another class of problems when (6, 8) holds, For the system

1 ou o 0H, wK (6.9
H, % TH®E, m T ToRE, - %

A Hy o [ u Hy 9 (2 \]
3 ["““‘H“ o \ Hy +——~HE FENH, )| = e
1 v ) o, wkK

n
[T [ == g
H_ “om M, 3 T—riK, ™™

let there be a homogeneous boundary value problem, uniquely solvable for any suffic-

iently smooth & = (€gz, €gn, €am)  whose inverse operator will be denoted by G
(©) :u = G (o) =. Let G* (0) be the operator conjugate to G (o), 1. e.,

(A (0)e6* (o)1t dn = {4 (0)16 (0) edt dy
D D

Then (the quantity § has been defined in Sect, 1)

(6.10)
1 . Ao)
wer <o) min 3oy I
[B min A (0)]™ max | (A (6) G* (5) — A (0:) G* (o)) f |*
E,n g, m
ja|*= (agi + %"agﬂ + a?\'\)”" ecin @ = (Agg, Bgn ) Gun)
Therefore, if
max | (G* (0) — G* (@) E|*—>0 for j, 0 .10
En

then (6, 8) follows from (6. 10). We emphasize that (6, 11) should be satisfied for fixed
7. Proof of the asymptotic accuracy of the shell
approximation for external loads of general form .
Let us assume that the boundary conditions for shell supports generally form
an overdetermined problem for (6,9), where we obtain a uniquely solvable inverse
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problem for G (0) :u =G (6) I by removing certain conditions from this overdeter-
mined problem,The overdetermined conditions imposed on @ resultin &  forming
a certain linear subspace in the space of smooth vector-functions, Let us still assume
that G* (0) is a continuous operator from (¥ (D X Z) —* (D x 3.
We first examine a field of external force of the following kind:

= ({ (&N §, A),0,0), i=12

Let Ci (h) be the Limit load coefficients corresponding to these force fields,
Theorem 7.1. pf

I — ek <o k), 6(k)—>0 for h—>0

then there exists a 7 (&) —» 0 as k—> 0 suchthat 1ey (B) — ¢ (B) | <y (A).
Proof. The assertion in the theorem follows directly from the inequality

s
sup {17 (e) \\ [h— fo] wAGE dndt} <

u, 4iv u=p D

Le
31(1(,;)) {I ie) S S [f; — £,] G(0)edEdn dg}

sup {1 (¢) \S 8(G* (0)if, — a]) ed dm d

€(0) Dy
Ie)= SS ¢ (& 1, ¢) AdE dndt

D &4

Let us turn to the reduction of the extemal forces of a general kind to the forces of a spe-
cial kind examined in Sect, 6,, and consider the transformation of the following integral

(1.1}
@ Ry @ n 8 i an =
4
S Lk LLYNE (Eaﬂsi)—g-?iv—(%ﬂdx)]dgdng=
Hen B A, B
;S LED S awndsandg+ | | hpeqadtandg
41 D%

We note that ¢ is a bounded function of its arguments,
Now, let us consider the integral

Ls G

;Sfc(a,n,c,h>w<e,n,:mdzdndz; \$ e[ mto +

13

12
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4 &
S 0 . A) dx] AdE dndt = g § hPPer AdEdn dg -+ A
2 bt

l!

A=( 1@ nDwEn Ldid

D

The function P¢? is a bounded function of its arguments, Furthermore, the integral 4
is transformed by means of (7, 1).

Let us turn to a consideration of the following integrals

i & 1A,
Ayu) = % fo & RYu (& M, 5) AydEdn = S g g;”agl w (19
DLy

8
. n8 f u (&, n,h)
|kl 7 ; ( )dk] dE d dt, =

iguf L u (&0, 8) - BAP ey -+ BAQ; aw‘]dgd az

=

Under the assumption of sufficient smoothness of fﬁ the functions Pz s OE
are also sufficiently smooth functions of their arguments, Let fe', f.+  vanishon
those parts of g} X %, where W (8, m, §) can be different from zero. Then
{7.2) can be rewritten as

T

fiA 1,

& Za

;;; éPa“‘eagd&dndHhS SRgwdtdndg, t—1,2
L

D,

Repeating the previous manipulations, 2 formula can be obtained for 4; (v), which
is analogous to (7.3}
Moreover, let us examine the integral

3 La
{7.4)
G bt

g =
L

uAdE dndg -+ h& S Pedeqpdt dndl + k& g Re*wdt dnd
D D
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A formula analogous to (7.4) can be obtained for the integral A4 (v).

Thus,a functional corresponding to the power of external forces of a general kind is con-
verted into a functional corresponding to the power of external forces examined in Sect,
6 and the functional

(7.9)

L
m @ mwEn Ddtdnd
Dg

-

where 2 (§, M, k) s a function of the order of one in /4. The shell approximation

will be asymptotically exact if (7.5) yields a small contribution to €k The con-

dition of smallness of this contribution can be investigated on the basis of properties of
solutions of boundary value problems for the system (6,9). A case is possible when (7,

5) will influence ¢, substantially and the shell approximation will lead to an incor-

rect result,

As an illustration, we consider the plate

Kp=K,=¢, GmeD, —1<i<!
In the case of a plate the shell approximation agrees with the approximation of the pl-

ane state of stress [7],
Let the boundary conditions have the form U lapxs =0 and let surface forces With

density & (f (&, ), 0, 0) act on the plane &=1. In this case (2, 2) has the
form
1 (
—=sup O dtd }
%o u(E,pﬂ) e ;fu <

du 1 (6u ov ov Au v

®o=2§)fl> Mg 3\ T " 0>dgdn
If s isa continuous function, then ¢y > (. Let us turn to the formula for ¢;. Let

us transform the integral

gfu (E M, 1)dEdn =
D

1y ¢ ou(E, m, A
2
D

/[u(i, h §)+§ —M—d)»]didnd(;:J(u)

L

1

1 h
J (u) =S [—z-fu + hf (14 g)eta -+ Tfa’('l + Q)w‘IdEd’r]dC
T
Then
1
O udivaeot (W)
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We set

. g a
Y@ —LgE. v=nE Lo, =g )

_ 1 du, 3, h2r2 2
W= q—hgw—hg———a;ﬁ_—z@ Ag, Ag = Pq %9

We find from the formula for °a

.1 [ 1
= -1 .
’1111.1(1) . >3:1:1 Jlt;Dl [IS)fuo dé dn +§fﬁqdadn]=07
du, 02q 1 [du v, %
<D1=2§)q>(5, n, '55——?;75?»7‘(‘57]0"*‘3“5)“4?_—0&6“

r<]

09, 0% Juy v,

Using the variational asymptotic method proposed in (8], we can show that the equal-
ity holds in (7, 6), If fE’ == (, then as follows from the results in Sect.”7, the shell
approximation is asymptotically exact, However, if ' k0, then ¥ <C¢q
and the shell approximation leads to an incorrect result,

In conclusion let us note that the proposed method of proving the asymptotic accuracy
permits obtaining quantitative estimates of the difference between ¢, and cp, as
well as an indication of the limits of applicability of the heuristic formulas,
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