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An asymptotic theory of limit she’ll ~qui~b~urn is constructed for rigid-plastic 

media. The variational approach permits investigation of the limit equilibrium 
without relying on an analysis of the state of stress. Hence, there is no necess- 

ity for the traditional division of the states of the shells into the bending and 

membrane states. The different states of shells are classified according to the 
degree of approximation to the exact three-dimensional formulation of the pro- 

blem. The first figure of the asymptotic expansion is introduced for the kine- 
matic factor and conditions are mentioned when this term of the expansion dif- 

fers from zero. The asymptotic accuracy of the shell approximation is proved. 

1, Formulation of the problem. Let us consider a three-dimensional 
vohlme T,, defined by the relationships 

r = P (E, 7) + Sk n = (Ps x p,) I P: x ch I 5 Cl (E, 7) < 
< 5 % 52 (Et VI 

Cl -=c 521 r ;=L (5 y, 21, tk q) E I), pz r- @xW& pq = ~~/~ 

Here P (%, rl) g’ Ives the surface in the three-dimensional space. It is assumed that the 
coordinate lines E = const, q = const thereon are lines of curvature. 

Let the volume Th contain an incompressible rigid-plastic medium with the dissipative 

potential qR (2, 3, 2, eij) [l]. Let us assume that the potential (Ph has the fo- 

llowing form in curvilinear coordinates 8, q, 5 

Here e = (eec, em, et,, qr, e4<, eat) is the strain rate tensor. If u = (u, D, 7~) 

is the vector velocity field in projections on E, g, 5 respectively, then 

(1.2) 

550 
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Here g,, R, are the principal surface curvature in the directions E, 2 , respec- 

tively. The potential 9 is assumed to be a convex unction of the first power of the 

homogeneity relative to the tensor e, , i. e. , 

and such that there exists a positive fi, for which 

W2 < 9, 12 = (qc2 + eqn2 + err2 + 2etq2 + 2e,c2 + 2eqt2)*1a 

Moreover, we assume q to be a smooth function of its arguments for 1s > 0. 

In the case of an isotropic medium, it can be shown that rp satisfies the relation- 
ship cp (E, 3, c, e) > ip (5, 11, 5, E), where 8 is the tensor e, at which cc: 

=e ttl: = 0. The velocity fields on which the tensor c, is defined are assumed to 

be solenoids 

(1.3) 

and to satisfy certain boundary conditions. 

Let a s;stem of forcesF,,:(f (E, 9, <), hfi (& q)), i= 1.2 act in a medium enclosed in 
the volume T: (E, 7) E D, Cl Q 5 < 52 . Here f (k “I7 Q is the density of 
the volume forces acting in the domain r. and fi (5, T!) is the density of the sur- 
face forces concentrated on the surface 5 = <if& r)), i = 1, 2. 

One of the most important quantities in the theory of rigid-plastic media is the kinema- 

tic factor for the system of forces Fht i. e., the number en, defined by the formula 

(1.4) 
1 -= 
% 

SUP 
{R 

fuAdE dq dc + 
U, div U=V 

T 

A = .H,H,, Si : & = 5i (E, q), Ai = 1 r; x r,’ 1 is_+, i = 172 

It will be shown that 

c, = co i-a(h), a(h)-+0 for h--+0 (1.5) 

The number :cg’ is called the shell approximation of the kinematic factor and a for- 
mula will be obtained for it, which is substantially simpler as compared with (1.4). 
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2. Shell approximations, Limits of applicability of the 
shell approximation, Let US introduce the shell approximation by introdu~irlg 
heuristic hypotheses. The foundation for this approximation will be given below. 

Let U/, be a field on which the upper bound in (1.4) is achieved, and let these 
fields converge to ua as h + 0 e It follows from the kind of components of the ten- 

sor e that u. = ho (S, q), v,, (E, q) , w. (E, q)) . Therefore, for small h 
the field U, has the form 

uh = UO + hu, (5, 9, 5, h) 
(2.1) 

where the components 1 (ET VT r;, h) are bounded in some sense. It follows from 

the form of the field (2.1) that a change in “1, on the order of one will cause a chan- 

ge on the order of ?z in the components eZF, P,,, esq and on the order of one 

in the component eEr:, eqr. Hence, by selecting the field Ui it is possible to 

try to diminish the value of w in (1.4) if possible, We therefore arrive at the shell 

potential 

Neglecting quantities approaching zero in A as h-r 0, and considering the up- 

per bound in (1.4) on the fields u = o (E, $7 we arrive at the following expres- 

sion for CO: 

NO incompressibility condition has been imposed in (2.2) in determining the quantity 
co on the admissible field 7~ since this condition can be satisfied because of the 

selection of wr (E, 9, 5, h) . The shell approximation introduced has meaning only 

for c,+O. 
Let us examine the case when en = 0. This holds, say, when the vector (P, 

Q, X)is not orthogonal to at least one solution of the system of equations eo (u) = 0. 

The system of equations 80 (u) - 0 (three differential equations in three unknown 

functions) corresponding to an unclosed surface r = P (4, rl), if additional boundary 
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conditions are not imposed for it, has an inf~i~ of linearly independent solutions (in 

contrast to the over-determined system e = 0. which has only the motion T, as a 

solid as the solution). Therefore, in order for there to be CO + 0, it is necessary 

to assume that the vector (P, Q, R) is orthogonal to all u , the solution of the 

system a0 (u) = 0. In addition, compliance with an infinity of orthogonality condi- 

tions is a very rigid constraint on the class of possible external forces, the formulations 

of the problem in stresses (such problems are considered in [2]. for example) are physic- 
ally incorrect since an arbitrarily small perturbation of the external forces can violate 

some of the orthogonality conditions and Cs thereby vanishes. 
3. Computation of the kinematic coefficient of the 

shell approximation, The problem of finding the kinematic factor ~a 

is closely related to the investigation of the properties of the following system: 

The theory of boundary value problems and methods of solving this system are develo- 
ped in [S]. The geometric aspect of the investigation of the system (3.1) is contained 

in 141. 

Let a sertain problem be posed for the system (3. l), which is uniquely solvable, i, e. 
let us assume that there exists an inverse operator 

u = Gq,, u = tU, V, w), e. = (Eeco, E& d 

with respect to which it is assumed that the conjugate operator G* 

1 P(Geo)dSdq =- f (G*P) e&dq, P = (P, Q, I?) 
D D 

is a bounded operator acting from the space of sufficiently smooth vector fields % 

into the space of continuous vector fields u. problems in which an operator bounded 

in the mentioned sense and conjugate to ihe inverse operator exists for the system (3. 

1) are called algebraicized ones. 

Using the operator G*, let us rewrite (2.2) in the form 

1 
- = sup 
co 

{\ (G*P)e&dq[ $o(Er 7. EO)@~~]-~} = (3*2) 
eeo(E. +l,) D 

The theorem on the norm of a linear continuous functional in Ll (u) is used in ob- 

taining (3.2). 
Therefore, the question of finding the kinematic factor reduces to an algebraic pro- 
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blem to find the upper bound of a function d five variables (E, q, eEo, sIIliO, ey,,O). 
Let E*, 9*, CO* be values of the variables for which the upper bound ~rnax~rnurn~ 
is reached in (3.21. Then the extremal field GO* (!& q) 

= e0”S (E - 5*9 rl - q*>* 
has the form Q* (8, $I 

The extremal field U*. an which the upper bound 
in (2.2) is reached has the form U* = &,.* 

Q? .!I?* 
Let us note that in the case of 

algebraicized problems, there is a point P (E 7 11 1, on the surface r “-I p (g, 71) 
which determines the nature of shell failure. Let us note also that when 90 is a smooth 
function of the variables 4, the extremal vector eO* is determined from the algebraic 
equations 

PEE F rlll E‘4n =1 (3.3) 

WO& = a*&&;, %&;, 

G*P = {&, F?liD ~%I) 

For example, in the case of the Mises potential 

“$0 = a (k rl)[(~;~)2 -t (E:? -t- &, -t- &’ -t- 2 @;d21*” 
the system (3.3) is solved easily and the following formula is obtained for co 

4. Examples. Calculation of the quantity 51 reduces to finding the oper- 
ator G*, . An effective construction of the operator G* can be performed, for exam- 
ple, in the case of second order surfaces of positive Gaussian curvature. In this case,tbe 
system (3.1) reduces to a Cauchy-Riemann system, 
In the case of shells of revolution, the operator G* can be found by separation of var- 
iables, whichresults in the solution of an infinite system of linear ordinary differential 
equations. However, if we represent the external load vector P in the form of a po- 

lynomial 
k=.li 

P (F, ?j = 2 P, (5) cirrq 
*=-iv 

(4 = ocnst is a parallel on the surface of revolution), then the problem of calculat- 
ing cD reduces to integrating a finite system of equations, 
Let us examine specific probiems. 
E x a m p 1 e 1, Let us eXamine the StirfaCe of a tOIllS 

5 = (b + u sin (f, / a)) cos q, u = (b -I- a sin K i a)) siz 2 a cos (5, a) 

In this case, in order for Co to differ from zero, the condition 
(4.1) 

must be imposed on the field p, in addition to the condition of orthogonality 
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of the torus motions as a solid. 

Condition (4,l) is a result of the fact that the system (3.1) for a torus with o,, = 0, 

allows a solution of the form 

v=o, 
u = C,sin(E/a), 065&Jra - C, cos (4 /a), 0 < S< rca 

C,sin(E/a), nadEd2ata 
) w= 

-Cscos(e/a), 51nX<~<2na 

in addition to the ordinary solutions ~orr~pond~g to the motion of the torus as a solid. 

This solution is a nontrivial infinitesimal flexure of the torus. For instance, the field 

P = 0, Q = 0, R =: p (b + a sin (5 / 4) 

corr~pon~ng to the case when a toroidal shell is subjected to uniform internal pressure 

with the density ft = P , satisfies the condition (4.1). Under the condition that 

Af= <a-- 6r = const, we have from (3.4) for Co 

x0’@ AC@--a) 
cg = 

pa 6362 - 3ab + a% 

The failure points K*, r*) are hence the following f* = 3na / 2, E* = ne /2,0 < 
n* d 2% 

Let us consider the problem of the kinematic factor for a torus rotating around the ax- 
is at the angular velocity w. In this case the centrifugal forces P act on the tor- 
us. Let ?’ be the volume density of the torus material. Then 

Q = 0, AT; = cons& 

P sin (c / a) = R cos (< / a) = A 

A = YW~ (b + a sin (4 / a)) cos (4 / a) sin (e 1 a) 

From (3.4) we find 

Example 2. Let us consider a conic surface r = 5 r0 (nf, where 4 is the 
length oi a segment of the cone generator measured from its apex, r. (q) is tne lineof 

intersection of the cone with a unit sphere whose center is at the cone apex, and tl 

is the arclength along this line. In the case of surfaces of zero Gaussian curvature the 

system (3, I) is solved by quadrahues [3], and ,F~ is found from (3.4). For example, 
let it be given the circular cone 

ro(q) = (COS q ~0s e, sin q cos e, - sin e), O<,(E;<Z 

Here (n / 2) - 3 is the cone half-angle. We examine an external force field of the 
following kind: P = 0, Q = 0, R = R (q). We then have from (3.4) 



E x a m p 1 e 3 . Let us consider a cylindrical surface. In this case 

$ (5, r)) = ro (rf) f YE, v== (0, 0, 11, l=oY = 0, 0 q f g L; 

I Ior 1 = $9 gc = 0, h;, = K (q), 0 < q \( qo 

Let us consider some specific problems of ~eter~ning CO for cylindrical shells. We as- 
sume that P = 0, 0 = 0, R = R (Ct. Then 

Substitufrrg (4.2) into (3,4), we find the formula for en. 
Let US consider the problem of the stiffness of the covering uf a ~~lindr~ca~ shell under 
its own weight, Let fg <VI) 1= VT fq)z y (q), Of. Then 

P = 0, Q = -qgygY’, R = - y&Y* I k (q) 

In this case (3.4) takes the form 

The shell remains stiff if CO 3 1. Let the coating of constant thickness A.5 be a part 

of a circular cylinder of radius I, 0 G rl < &. Then k c- -_1 f I: r x-- _g ~0s (q 1 I), 

Y = t sin (2 / t). We find from (4-S) 

If La + P - 11 LV> 0, the greatest value in (4.4) is reached at 9 =: nb i 2. 

If JY -t- &d - 15 PE” < 0, the greatest value in (4.4) will he reached for q = 0 

or rl = nl. 

We note that the stiffness condition depends on L and for sufficiently large L 

the covering generally loses stiffness. 
Formula (4.3) shows that there exists a single form of covering for which c~ is inde- 

pendent of L, For this it is necessary that 

(4.5) 
(@” / v (q)) - $! = oc#Aet 

Equation (4,5} is easily ~t~grated and there is obtained from it that the generator of 
such a covering is a catenary. 

5. Nonalgebraicrzed problems. The problems considered do not 
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cover the whole domain of applicabi~~ of the shell approximation. Namely, such ki- 
nematic constraints as result in overdefined problems for the system (3.1) can be impos- 

ed on the allowable field U . 
no Ml) 

In this case the system (3.1) reduces to (3.2). but the 

in (3.2) belong to some subspace of the space of smooth vector fields, 

and hence, the theorem on the form of the norm of a linear functional in Lr (D) is not 

directly applicable, which does not afford the possibility of algebraicizing the problem. 

However, an algo~~m can be given to find a system of lower bounds for co* This al- 
gorithm is based on the method of Lagrange multipliers. The following theorem of Nik- 

ol’skii [5] plays an essential role here. Let a linear, continuous functional F (u) be de- 

fined on a subspace M of the Banach space B , extracted by a finite system of linear 

continuous functional Tiy Ti (u) = 0, i == 1 ,* . . . N. Then 

Let us return to Example 3 in Sect. 4. Let a cylindrical shell of,length L, 0 < F < 

.&AC = Iwith circular cross section of radius e be subjected to the normal pressure 
p - 0. 0 = 0, R = .R (El. If the shell is fixed only at the edge F-, = 0, then as fo- 

llows from (3.4), (4. Z), the quantity R (51, at which the shell remains rigid should be 
such that 

*ax I R (51 I < I/i%, / (24 
e 

Now we examine the same problem but under the conditions u (0) = u (L) - 0. The 
constraints mentioned result in the following condition for ~~~0: 

[8<< (z)& =o 

0 

Using the Nikol’skii theorem, we obtain for CO 

Let R (<) be enclosed witbin the limits 

R, = min .R (<) <R (e) g max R (EJ = R* 

We examine three domains on the plane (Rfi*, R*) 

D, = fR* > R,, R* Z - 2%) 

Ds = (R* >, R,, --lia R, < R* < - 2R,l 

D3 = {R*>, R,, R* < -VzRJ 

Then the conditions on R (41, for which the shell remains rigid are the following 

R*<d%o/a in Da 
(R,2 + R*a + R,R*)“2 < ?%I f @a) in D, 

R,> -?l/zZof a h3 Da 

We note that fixing the second edge of the shell results in an increase in its rigidity. 
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Let us consider the problem of the rigidity of a covering of cylindrical shape of const- 
ant thiCktESS At = 1. We assume that overdetermined conditions u (0, q) = u (L, q) 

= orelative to the system (3.1) are imposed on the field u . This assumption results in 
the constraints 

L L 

s %4 
o (z, r]) dz = 0, 1 [2ee, --(&T)aE,;/aq]dt=O 

0 0 

To solve the overdefined problem obtained, two functional Lagrange multipliers ‘1, (n), 
.u (rl) must be introduced. In the problem under consideration, the number CO has 

the following form in the case of the Mises potential 

For example, if the generator of the cylinder is a catenary, then (5.1) becomes 

Evidently k and P should be selected as follows 

P = 0, h = If2 y” I K2 

The extremal field which satisfies the overdefined conditions is found easily in the ca- 
se under consideration. 

6. Proof of the asymptotic accuracy of the shell 

approximation for external loads of a special kind. 

The asymptotic accuracy of the shell approximation is investigated under the following 

assumptions relative to the formulation of the problem. Let c, -= const, &z =’ 

cons t , rp be independent of 5 and ‘p (c, q, e) ;Ac# (j, q, a). Moreover, it is as- 

sumed that the boundary conditions are independent of c. 
Let us consider a system of external forces of a special kind 

F/1 : (f CL $7 0, 0) 

Let %’ denote the following number: 

Here the upper bound is taken over fields U, satisfying the boundary conditions but 

not generally satisfying the condition (1.3). Henceforth in addition to the variables 

E7 q1, 5 it will be convenient to consider the variables E, rll of where 
o -I hz& 8 = (o : 01 < CT < 02). We note that the coefficients in (1.2) are 

independent of h in these variables. -The following lemma will be used below. 
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Lemma 6. 1. Let M(i, rl~ o) be a sufficiently smooth function in the neinh- 
bourhood aD X x (a0 is a piecewise-smooth boundary of D) and A (E., 11, 
is), B (f, q, o) sufficiently smooth functions in the same domain which are not zero 

on 80x2. There exist smooth functions Us, Vs, which vanish on 80 X 2 

and outside a boundary layer of width 6 (the boundary layer enters into the domain 

of definition of the functions M, A, B), such that 

The lemma can be proved by direct construction of the functions us, us according to 
the scheme elucidated in [6]. Namely, it is possible to set us = 0, in a volume 
adjoining the piece of the boundary aD x X, to which the lines q = eons& o = 

const are transversal, and ug can be found in this volume from the conditions of 

the lemma. Furthermore, these local solutions are matched by using the partition of one, 

Theorem 6, 1. Let 

chl >cO + a,(h), a, (h)-+o for h-to (‘3.1) 

Then 
for 

Proof. From the assumption relative to rp it follows ch > chl. 
to prove the theorem it is sufficient to show that 

Therefore, 

co 4 Y (h) a Q, y (h) + 0 for h+O (6.2) 

Let Ut* (ET 7) b e a family of infinitely differentiable fields on which the upper bound 
in (2.2) is realized. We assume that the ut* satisfy the normalization condition 

(6.3) 

Here et’* 
1) 

is the tensor 8, evaluated by means of uf*. Since the WI* enter al- 
gebraically in the expression for ntO*, the Wt* can be considered finite in D. Let 

6 (t) * 0 as t + 0. We introduce the functicrs usCtJ (E, .$, DsCt) (E, q) such that 

’ (6.4) 

US(t) ]aDxE = V&(t) jc3Dx.E = 0 

( 1 a%(t) av 
m7s.h l;’ >I = aDxc 

1 - -- L 
avt* 

, ic, a;;* + -- + akq 
bll I aq + iP,IIP, I ( Ut --gc- -t- 



that the relationship 

will be satisfied for the vector functions ut : Ut = &* + a(t), vt = vt* -t z&(t), 
Wt = wt* where eW.F, emit’, &,,,,t” are evaluated by means of ut = (Ut: 

ut, Wl>. It follows from conditions (6.4) that: 

(6.5) 
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By virtue of Lemma 6.1, the functions ~a(~), agCt, and 6 (t) can be selected such 

&t + &l l8DxE = 0 

The vector fields Ut satisfy the same boundary conditions as does u**. To obtain (6. 

2), let US examine Uth 

%h ‘=: u1 (E, q) + & [utl (E, q) + Ut2 (g, q, &)I 

Uth = ut 6 q) +- @ [vtl (& $ i- ut2 (g, 9, &)I 

Wth = Wt 6 $ -I- hwlh’ (E, q, 5) 

Here 

1 awt 
Ut 

l,___-_ 

I P-,1 x 
- - - K,vt 

The functions Ut2 (E, 7, 0)~ at2 (ET q3 o) equal zero on 6'D x Z and 

The existence of Ut2~ ‘t2 with the properties mentioned follows from Lemma (6. 

1). The function Wthi is determined from the equations 

(6.6) 
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It follows from (6.4)-(6.6) that %’ can be selected to vanish on dD X 2, 
where %h satisfies the same boundary conditions as does ut*, and satisfies the in- 

cornpr~~~~~ condition. 

The following inequality results from (1.4) 

where E (t), G (t), generally tend to infinity as t + 00 Let us select the depen- 

dence t (h) so mat hE (t (A$)+ 0, G(t (h)) h-+ 0 as h-t 0. Then (6. 
2) follows from (6.31, (6.7), where y (i”b) can be estimated in terms of the given pro- 
blem. The theorem is proved. 
We note that finding the quantity ‘hl is a more simple problem than finding Ch, 
where the inequality Chl < Ch always holds. 

Let us indicate certain cases’ when (6.1) is satisfied and consider 

A@‘)= @W)d%h B(a)= Sc~(%,q,t)A(o)Wq 
D D 

A(o)=A, W~==a~<o,<a~=~~‘; 

Theorem 6.2. 

Ch’ > inf,c0 (a) 

Proof. The assertion in the theorem is equivalent to the inequality 

1 f Chl 6 sup, (1 I co (4) 
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The assumption that the boundary conditions for u (t, ‘1, 5) are independent of 

C is used in obtaining the last inequality. 
Therefore, to establish (6.1) it is sufficient to show that 

co (CF) + ca for h 3 0 (6.8) 

The relationship (6.8) can be obtained, for instance, for surfaces of positive or zero 
Gaussian curvature. In this latter case, formulas for the general solution of a system 
of equations of infinitesimal flexure of developable surfaces (3.1) can be used [3]. 

We present still another class of problems when (6.8) holds. For the system 

wKC 
(6.9) 

1 - hP& = “E”, 

let there be a homogeneous boundary value problem, uniquely solvable for any suffic- 

iently smooth z = kc7 et?, e,,) wh ose inverse operator will be denoted by G 
(a) : u = G(a) E. Let G" (0) be the operator conjugate to G (o), i. e., 

1 A (CT) eG* (a) fd$ dq = 1 A (6) PG (0) edg dq 
1D D 

Then (the quantity /!J has been defined in Sect. 1) 
(6.10) 

-& < I A (a) 
CD (%I min------ -1 

e. ,, A (o-l) 1 
-+- 

A (e)G*(c~))f/* 

Therefore, if 

mEy I (G" (4 - G* (cFJ) T 1 * -+ 0 for h-.+. 0 (6.11) 

then (6.8) follows from (6.10). We emphasize that (6.11) should be satisfied for. Fixed 
f. 

9. proof of the asymptotic accuracy of the shell 

approximation for external loads of general form . 
Let us assume that the boundary conditions for shell supports generally form 

an overdetermined problem for (6.9), where we obtain a uniquely solvable inverse 
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problem for G (0) : u * G (0) f by removing certain conditions from this overkter- 
mined problem.The ov~rd~term~ned conditions imposed on U result in 8 forming 
a certain linear subspace in the space of smooth vector-functions. Let us stiIl mume 
that G* (a) is a continuous operator from I? KI X 2) * C (D x 2). 
We first examine a field of external force of the following kind: 

r,et Ci (22) be the limit load coefficients corresponding to these force fields. 
Theorem 7. I.. If 

1 4 - f, jckcn xcj < c;1 {h), a (h) =+ 0 for h -+ 0 

then there exists a Y frz) -fj 0 as i: + 0 suCh f&t 1 CZ (&I - Cz @I 1 =Ci Y (f& 
Proof. The assertion in the theorem folIows directly from the inequality 

Let us turn to the reduction of the external forces of a general kind to the forces of a spe- 
cial kind examined in Sect. 6, and consider the tra~format~ou of the following integral 

We note that pci is a bounded function of its arguments, 
Now, let us consider the integral 
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The function &s is a bounded function of its arguments. Furthermore, the integral A 
is transformed by means of (‘7.1). 
Let us turn to a co~iderat~o~ of the follow~g integrals 

Under the assump~o~ of sufficient smooths of ki the fuuCtiOIB pEi, @’ 
are a&o suff&zkntly smooth functions of their arguments. Let fgzl fqi vanish on 

those parts of d.D x Z, where r.47 65% 11, Q can be different from zero. Then 

(‘7.2) can be rewritten as 

(7.3) 

h 

Repeating the previous ma~FU~tiOnS, a formula can be obtained for Af (V), which 

is analogous to f7.3). 
Moreover, let us examine the integral 

(7.4) 
4 
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A formula analogous to (7.4) can be obtained for the integral A (v). 
Thus,a functional corresponding to the power of external forces of a general kind is con- 
verted into a functional corresponding to the power of external forces examined in Sect. 

6 and the functional 

where a (E, q, h) is a function of the order of one in h. The shell approximation 

will be asymptotically exact if (7.5) yields a small contribution to %a The con- 

dition of smallness of this contribution can be investigated on the basis of properties of 

solutions of boundary value problems for the system (6.9). A case is possible when (7. 

5) will influence eh substantially and the shell approximation will lead to an incor- 

rect result. 

As an illustration, we consider the plate 

KC = K, = C, (E, q) ED, -i < c < 1 

In the case of a plate the shell approximation agrees with the approximation of the pl- 
ane state of stress [7]. 

Let the boundary conditions have the form u ]~DXE = (J 
density h (f (E, q), 0, 0) act on the plane 5 = i 1 

form 

and let surface forces with 
In this case (2.2) has the 

-s-g, 0,O dEdq 

If j is a continuous function, then c? > 0. Let us turn to the formula for c,,. Let 
us transform the integral 

1 
1 

2 ss II f U(L%C)+ dh 
3 

dcdqdg = J(u) 
D-l 

J(u) = S[ +fu+hf(l+c)e~~++ < f-'(I + tb+W’M 
T 

Then 

1 
--I 

'h , 

” $p,=, 11-l (e) ’ #)I 
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We set 

a4 
u=uo(Et+_6, V=zJ,(E, TI)__t$ 

Q = q (E. rl) 

We find from the formula for *b 

liml >, sup 
(7.6) 

h+o ch UQ, Q 
{@;I [\ f~o dc drl + \ fE’q W?] = & 

D D 

avo 
-&--t&G a2q 6Aq-+$f, 0, O)d<dq 

Using the variational asymptotic method proposed in [8], we can show that the equal- 
ity holds in (7.6). If &’ = 0, then as follows from the results in Sect. 7, the shell 
approximation is asymptotically exact. However, if f,’ :,I= 0, then c* < co 
and the shell approximation leads to an incorrect result. 

In conclusion let us note that the proposed method of proving the asymptotic accuracy 
permits obtaining quantitative estimates of the difference between CO and chr as 
well as an indication of the limits of applicability of the heuristic formulas. 
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